醫療新創技術落地的最佳選擇
數位健康新創轉譯產學聯盟整合學術、研究和產業資源,聯合北醫大各學研與事業單位,加速創新數位健康解決方案的商業化。
技術落地驗證與產品實績
醫守科技開發全球第一套以AI深度學習技術、電子病歷資料,偵測不適當處方診斷與用藥,並獲得美國FDA認證
醫守科技(AESOP Technology Inc.)由現任國際醫學資訊學會主持李友專教授與龍安靖博士,以及北醫訪問學者Jeremiah Scholl博士共同成立,擁有的次級數據橫跨健保美國及台灣數據以及國際多家電子病歷數據,用以開發醫療人工智慧決策支援系統,即時偵測不當診斷與用藥、提供醫師最適建議,以改善臨床決策品質及診斷流程,提供醫療院所病人安全與處方優化解決方案。
殊榮肯定
- 2023 US BIO科技部遴選贊助展覽新創
- 2022 Mayo Clinic Platform_Accelerate 全球前8強新創
- 2021 Meet Neo Star年度精選30強潛力新創,
2021 陽明交大IAPS最佳新創獎 - 更多新聞報導:https://tw.aesoptek.com/news
學術發表
- Chun‑You Chen, Ya-Lin Chen, Jeremiah Scholl, Hsuan-Chia Yang, Yu-Chuan Jack Li, Ability of machine-learning based clinical decision support system to reduce alert fatigue, wrong-drug errors, and alert users about look alike, sound alike medication, Computer Methods and Programs in Biomedicine, 2023, 107869
- Jeremiah Gordon Scholl, An Jim Long, Yu-Chuan (Jack) Li, Reveal irAE by analysis of 197,921 claim-based prescriptions, Journal of Clinical Oncology , 41, 2023 (suppl 16; abstr e13639)
- Islam MM, Li G-H, Poly TN, Li Y-C. DeepDRG: Performance of Artificial Intelligence Model for Real-Time Prediction of Diagnosis-Related Groups. Healthcare. 2021; 9(12):1632.
- Wang CH, Nguyen PA, Jack Li YC, Islam MM, Poly TN, Tran QV, Huang CW, Yang HC. Improved diagnosis-medication association mining to reduce pseudo-associations. Computer Methods and Programs in Biomedicine. 2021 Aug;207:106181.
- Chin YPH,Song W,Lien CE,Yoon CH,Wang W,Liu J,Nguyen PA,Feng YT,Zhou L,Li YC,Bates DW. Assessing the International Transferability of a Machine Learning Model for Detecting Medication Error in the General Internal Medicine Clinic: Multicenter Preliminary Validation Study. JMIR Med Inform 2021;9(1):e23454. doi: 10.2196/23454. PMID: 33502331
- Huang, C. Y., Nguyen, P. A., Yang, H. C., Islam, M. M., Liang, C. W., Lee, F. P., & Li, Y. C. (2019). A probabilistic model for reducing medication errors: A sensitivity analysis using Electronic Health Records data. Computer Methods and Programs in Biomedicine, 170, 31-38. doi:10.1016/j.cmpb.2018.12.033
- Nguyen, P. A., Syed-Abdul, S., Iqbal, U., Hsu, M. H., Huang, C. L., Li, H. C., Li, Y. C. J. (2013). A Probabilistic Model for Reducing Medication Errors. PloS one, 8(12).doi: 10.1371/journal.pone.0082401
「痣能達人」搭載LINE ChatBot,全台第一款利用AI深度學習早期預測皮膚癌風險之消費者線上服務
醫智健康科技股份有限公司(ASKiN Co.,Ltd.)是由臺北醫學大學衍生的新創公司,專注於運用人工智慧技術推動精準醫療和預防醫學。醫智公司的願景是打造高效智慧醫療,運用科技降低醫療成本、提高效能,讓所有人都能獲得便利可及的優質醫療服務,讓醫療資源更加普及。其三大主力產品線分別是「痣能達人MoleMe」、「痘痘達人DoeDoe」和「指甲達人」。這些產品運用人工智慧和聊天機器人模擬專業醫師判斷流程,協助使用者掌握皮膚疾病狀況並獲得照護建議。其中「痣能達人MoleMe」更獲得第16屆國家新創獎肯定,研究成果更曾發表於頂尖醫學期刊。
學術發表
- Chin, Y.P.H., Hou, Z.Y., Lee, M.Y., Chu, H.M., Wang, H.H., Lin, Y.T., Gittin, A., Chien, S.C., Nguyen, P.A., Li, L.C., Chang, T.H. and Li, Y.C.J. (2020), A patient-oriented, general-practitioner-level, deep-learning-based cutaneous pigmented lesion risk classifier on a smartphone. Br J Dermatol, 182: 1498-1500. https://doi.org/10.1111/bjd.18859
- User satisfaction with a smartphone-compatible, artificial intelligence-based cutaneous pigmented lesion evaluator
先知:早期癌症風險數位快篩工具
「先知」是利用資料科學開發的早期癌症風險數位快篩工具,由臺北醫學大學醫學資訊研究所李友專特聘教授、楊軒佳副教授,以及北醫大健康資訊科技國際研究中心副研究員黃芝瑋博士所帶領的北醫大團隊所研發,運用 4 億筆以上的去識別化診斷和用藥資料來訓練「先知」,「先知」能夠從病患的電子健康記錄中提取關鍵資訊,並精準預測個體在罹肺的可能性,包含肺癌、皮膚癌、肝癌、攝護腺癌及乳癌等超過 10 種國人常見癌症之風險。此技術不僅提高了篩檢效率,還降低了病患的侵入性檢查風險,提供了一種方便且非侵入性的早期偵測手段。
此研發成果不僅拿下 2022 年的第 19 屆國家新創獎,成果也陸續發表在《Journal of Medical Internet Research》和《JAMA Dermatology》等國際期刊
學術發表
- Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records: Population-Based Study
- Artificial Intelligence–Based Prediction of Lung Cancer Risk Using Nonimaging Electronic Medical Records: Deep Learning Approach
- Assessment of Deep Learning Using Nonimaging Information and Sequential Medical Records to Develop a Prediction Model for Nonmelanoma Skin Cancer